Viser innlegg med etiketten apper. Vis alle innlegg
Viser innlegg med etiketten apper. Vis alle innlegg

16 mai, 2016

AiM på Google Play


Apps in Math, eller AiM, er et prosjekt jeg har vært med på siste året. I dette prosjektet har noen slovakiske bachelorstudenter i informatikk samarbeidet med noen norske studenter og lærere om å lage noen applikasjoner og spill til bruk i matematikkundervisninga. Det har etterhvert blitt til Apps in Math, som nå ligger ute på Google Play. Eplevariant kommer visstnok snart.
Denne appen inneholder over tjue små spill eller oppgaver som kan brukes på telefon eller nettbrett. Noen er rene regneoppgaver, mens andre kan brukes litt mer utforskende. Ettersom det er et samarbeid mellom slovakiske og norske studenter er noen av appene mer egnet for slovakisk læreplan enn norsk - for eksempel er det en app om å lære romertall.

Klikk her for å gå til Apps in Math på Google Play.

26 april, 2015

Spill: CalQ

CalQ er et spill som trener regneferdigheter uten nødvendigvis å være av typen "drill & kill". Det fins en stor mengde mobilapper og spill som fokuserer på å gi elevene regnestykker som skal løses og sjekkes. CalQ legger det an litt annerledes. Her får du et "target number", et mål som du skal prøve å oppnå. I bildet under er målet -4, og du skal dra fingeren gjennom tallene på rutenettet for å få -4. Røde tall trekkes fra, grønne tall legges til. De blå multipliserer med faktoren som står på dem. En liten inkonsekvent greie her er at når du har 0 (verdien du har så langt er null), så vil f.eks. x2 ikke føre til regnestykket 0 x 2 = 0, men til 0 x2 = 2. Man bytter tydeligvis automatisk fra 0 til 1 når man bruker multiplikasjon først. Kanskje en feil, kanskje er det greit for å unngå at man ganger med null og får null hele tida. 

Hensikten er å få til så mange regnestykker som mulig på den tilmålte tida. Det dukker opp en stjerne rett som det er, dra regnestykket ditt innom denne så forlenges tida du har til rådighet.

Til slutt får du en poengsum (som jeg ikke tør å laste opp til Facebook og twitter...)


Det trekkes ofte fram at den analytiske tilnærmingen til matematikk (det å "plukke fra hverandre", f.eks. ved å spørre "hva slags regnestykke kan gi 4?") at denne tenkemåten kan føre til bredere forståelse for regning og bedre tallforståelse enn den typisk syntetiske tilnærmingen ("hva er svaret på 2+2?"). Kanskje en hårete påstand, men det er klart at det ligger større kognitive krav bak den analytiske enn den syntetiske måten å tenke regnestykker på.


25 oktober, 2014

Spill: CrossMe

EDIT: Dette spillet kostet visst noen kroner likevel, for en gratis versjon kan du se nederst i posten.

Cross Me er nok en type puslerier som er som skreddersydd for nettbrett. Ja, for det er faktisk litt knotete på en liten telefonskjerm, der man må zoome litt her og der for å få til å trykke på rett sted.
Dette spillet har helt sikkert sin analoge opprinnelse, men jeg klarer ikke å finne ut hva det heter. Jeg synes å minnes at det er kinesisk eller japansk, men er usikker. I følge http://en.wikipedia.org/wiki/Nonogram er Hanjie eller Griddlers navn på papirutgaven, men jeg klarer ikke huske at det var slik...
Når du starter spillet presenteres du for et rutenett som du skal fylle inn. Tallene på siden angir hvor store rekker som skal fylles inn. På bildet under er det for eksempel slik at det i øverste rekke skal fylles ut fem ruter, det vil si alle. Et lurt sted å begynne. Tredje og femte rekke er også innlysende, samt første kolonne. Så da er man godt i gang!


Spillene blir litt mer omstendelige etter hvert som både størrelsen på rutenettet økes, og man også må fylle ut flere serier i samme rekke eller kolonne. Her ser du at det i øverste rekke skal fylles ut to ruter, men de skal ikke henge sammen - og må altså stå som to separerte ruter.


Etter hvert begynner mønsteret å ta form, her er et delvis løse puslespill på tjue ganger tjue ruter. Taktikkene kan likne litt på sudoku, for man er ofte like opptatt av å fylle inn hvor det IKKE må fylles ruter. På samme måte som man i sudoku gjerne noterer seg hvilke tall som ikke kan stå i ei bestemt rute.


Litt mer utfylling og løsningen er klar!


Du finner spillet på Google Play her: https://play.google.com/store/apps/details?id=com.mobiledynamix.crossme&hl=no

EDIT: Etter å ha kikket rundt på Google Play endte jeg opp med følgende variant, som fungerer kjempebra - Griddlers Plus. Det fungerer omtrent som spillet nevnt over, du blir presentert med en grid som denne:


Også her gjelder det å fylle inn rutene gitt ved tallene på sidene. Skipet over ser slik når alle rutene er riktig utfylt:

 Det er massevis av bilder å løse her, men et lite drawback er at de avanserte spillene er ganske vanskelig å få gjort på en mobiltelefon så det er definitivt en fordel med nettbrett og kanskje stylus.

Se om dette kan være noe for deg på https://play.google.com/store/apps/details?id=com.ally.griddlersplus !

14 oktober, 2014

Spill: Wuzzit Trouble!

The Wuzzits need you! Det fins en bråte apper for å jobbe med matematikk og for å lære matematikk. Det kanskje best kjente eksemplet nå for tiden er nok Dragonbox (De siste ukene har det nok riktignok handlet mest om at elever _ikke_ ble bedre i algebra av Dragonbox. Her trengs det riktignok en del flere studier, men artikkelen fra tangenten var iallfall ikke videre positiv. Her er rapporten den bygger på). 
Keith Devlin er en anerkjent fagdidaktiker i matematikk. Han har skrevet en hærskare av bøker, både innenfor vitenskapsfaget matematikk, fagdidaktikk og rent populærvitenskaplig. (Min favoritt er nok  the language of mathematics). Spennende er det da at han har stått bak utviklingen av spillet Wuzzit Trouble, som du finner både til Android og iOS-enheter. 
Spillet følger de vanlige skjemaene med at man får en til tre stjerner for hvert gjennomført brett, og må låse de opp etter hvert som man turer fram. Akkurat som Angry Birds og alle de der. 
I dette spillet er oppgaven din å trekke opp et hjul med et bestemt antall omdreininger. Når du slipper snurrer hjulet rundt og får et større hjul til  bevege seg i motsatt retning.



Hensikten er å få snurret det store hjulet slik at nøklene i tur og orden havner øverst der den grønne trekanten er. På bildet over ser du tallet fem på det lille hjulet. Det vil si at hver omdreining du trekker det opp med får det store til å flytte seg fem hakk i motsatt retning. Vi ønsker at det store hjulet skal flytte seg først 5, så 5 til, så 5 til og så 5 til. Da har det store hjulet stoppet opp på både 5, 10, 15 og 20 og alle nøklene blir låst opp. Vi kan altså løse oppgaven ved å trekke det minste hjulet rundt fire ganger. 


På bildet over har vi snurret det minste hjulet rundt en gang i negativ retning. Når vi slipper spinner det i den oransje pilens retning og får det store hjulet til å snurre slik at det står 55 øverst og nøkkelen er fri.


Det deles ut stjerner og det er om å gjøre å bruke minst mulig trekk for å låse opp alle nøklene.


På bildet over ser vi at vi må snurre først den ene veien og så den andre. Eller klarer vi å komme helt rundt ved å snurre en og samme vei? Vi kan maks trekke opp det lille hjulet med fem omdreininger...
Dette spillet virker passe meningsløst til å begynne med, men etter hvert ser man at man virkelig må tenke logisk før man trekker opp det lille hjulet med riktig antall snurr i riktig retning. Det er litt vanskelig å forklare, her er det bare å prøve selv!

Last ned til Android eller iOS!

07 mai, 2014

Brannfakler og Dragonbox

Dragonbox (http://www.dragonboxapp.com/) er muligens det digitale spillet som har blitt mest hauset opp for bruk i matematikkundervisningen. Det har blitt markedsført ganske tungt, fått massiv oppmerksomhet i inn- og utland, og vært i utallige aviser og reportasjer.

Selve spillets gang er ikke noe nytt. Man får en situasjon, skal gjøre det samme på begge sider og finne ut hva som skjuler seg i en beholder man ikke får se inni. I Algebra för alla (Bergsten et.al, 1997) har vi en snart tjue år gammel behandling av en konkret versjon av likningsspillet. Boka er middels vanskelig å få tak i, så du kan også se litt i denne artikkelen fra NCM (tilsvarer omtrent Nasjonalt senter for matematikk i opplæringen i Sverige):
http://ncm.gu.se/pdf/namnaren/0710_08_4.pdf. Det er fortsatt populært å bruke fysiske, konkrete versjoner av dette spillet uten at vi trenger digitale verktøy til dette. Og for all del, selv om jeg i farten ikke vet hvor likningsspillet kommer fra, er det nok kjent fra lenge før 1997!

Nå har Dragonbox gått sin seiersgang over verden, møtt stor begeistring og beskjeden kritikk, etter hva jeg kan se. Selv har jeg plassert meg litt sånn på ignoramus-linja, skeptisk inntil jeg ser noen grunn til at det skal funke, men også åpen for tanken om at det kan være artig å bruke det, og forhåpentligvis nyttig. Jeg har kjøpt spillet og spilt gjennom det, og også latt husets femåring frese gjennom. Hun er muligens en av unntakene, som ble lei etter de første femten brettene, men jeg ser det er eksempler i hopetall på barn som har pløyd gjennom hele spillet på kort tid og som har vært motiverte for det.

Jeg skal ikke analysere spillet, men kjapt oppsummert, du får oppgaver som i starten er simple og tilsynelatende langt unna matematikklandskapet. Sakte, men sikkert nærmer du deg matematikken ved at kompleksiteten og representasjonene endres. Av det jeg likte var at det fokuserte veldig på at det hele tiden må gjøres likt på begge sider, en fundamental tanke i likningsløsningen, selv om det også fins steder der man roter seg bort i denne tankegangen. Det jeg ikke liker så godt er prinsippet om at symboler og algoritmer som er fremmede for eleven, slik som likningsalgoritmen og algebrasymbolene i matematikken er, nå blir byttet ut med et nytt, forholdsvis meningsløst representasjonssystem og regelverk. Man kan ikke gjøre nøyaktig det samme med likninger som med Dragonbox og jeg tror mye av hypen ligger i at media har omtalt det som en erstatning av likningsundervisningen, mens det sannsynligvis ikke var ment slik.

På hjemmesidene til appen reklameres det at man kan lære Algebra Basics på få timer. Jeg kan ikke fatte og begripe at det skal gå an, og jeg må bare tenke at da har man nok en annen definisjon på læring enn det jeg tenker bør være rådende i skolen.

7.7 millioner likninger løst på kort tid. Noe av det jeg husker med gru fra barndommen er denne konkurransen der det er om å gjøre å bli først ferdig. Kappregning, som det omtales som i Geir Bottens bok Meningsfyllt matematikk

Nå har det vært en undersøkelse i Dagens Næringsliv, der læringsutbytte av Dragonbox sammenliknes med tradisjonell undervisning (http://www.dn.no/meninger/debatt/2014/04/23/Skole/dataspill-og-lringsutbytte). Det er i det hele tatt livsfarlig å skulle foreta forskning som dette, man kommer gjerne til konklusjoner det er vanskelig å backe opp. Kompleksiteten i klasseromsituasjoner gjør at sammenliknende forskning ofte er bortimot en umulighet og ofte ikke engang er ønskelig.

Ønsker du å se hvor "tråkig" man KAN lage en likningsapp, kan du kanskje heller se på denne: http://www.skolresurs.fi/matteva/algebra/ekvationsShooter.html :)


Litt.
Bergsten, C., Häggström, J., & Lindberg, L. (1997). Algebra för alla. Göteborg: Nämnaren NCM Göteborgs universitet.
Botten, G. (2003). Meningsfylt matematikk: nærhet og engasjement i læringen. Bergen: Caspar forlag.