Viser innlegg med etiketten trekanter. Vis alle innlegg
Viser innlegg med etiketten trekanter. Vis alle innlegg

06 august, 2010

Alle trekanter er likebeinte!

Denne oppgaven husker jeg at jeg fikk på et fagdidaktisk kurs i matematikk for en del år tilbake. Den ligger ute på hundrevis av nettsider, men er såpass finurlig at den fortjener noen ord likevel. Jeg presenterer bare teoremet med (delvis) bevis i dag, og løsningen på paradokset kommer ved en senere anledning :)

Jeg bruker beviset fra http://www.jimloy.com/geometry/every.htm, men oversetter det for den som ikke ønsker å fordype seg i utenlandsk matematikk... :)

Beviset stammer visstnok fra W.W. Rouse Ball (1892).

Påstand: Alle trekanter er likebeinte.

Bevis:
Tegn en (nesten) tilfeldig trekant ABC, der du passer på at AC>BC. Jeg ønsker å vise at likevel er AC=BC. Konstruer først vinkelhalveringslinjen til vinkel C og tegn midtnormalen på AB. Midtnormalen halverer AB i punktet D. Vinkelhalveringslinjen til C og midtnormalen på AB kan ikke være den samme linjen (da er trekanten opplagt likebeint) så da krysser de hverandre i et punkt E. Dette punktet E må enten ligge inne i ABC, på kanten AB eller på utsiden av ABC. Vi feller ned normaler fra E til henholdsvis AC og BC. Nå kan vi tegne en hjelpefigur for hvert av disse tre tilfellene.

Tilfelle 1: CEF og CEG er rettvinklede trekanter med en side felles, så de må være kongruente. Derfor er EF=EG og CF=CG. Rettvinklete trekanter har vi også for ADE og BDE, og de er også kongruente. Da må AE=BE. Til slutt har vi også rettvinklete trekanter AEF og BEG, og de må også være kongruente. Da må AF=BG. Videre er AC=BC ved å legge sammen (AF+FC = AC og BG+GC = BC). Det vil si; AC=BC, og dermed må trekanten ABC være likebeint.

Tilfelle 2 og tilfelle 3 kan vi vise på nesten helt tilsvarende måte. I tilfelle 2 (E ligger utenfor ABC)  må vi trekke fra i stedet for å legge sammen til slutt, og i tilfelle 3 (E ligger på AB) er det tilsvarende argument med noen trekanter mindre å betrakte. Du kan prøve selv, eller ta meg på ordet ;)  (Men det er altså ikke der feilen ligger, den har allerede skjedd i tilfelle 1).

Uansett, ABC er likebeint i følge beviset.