OK, så fann vi arealet litt unøyaktig, men når ein såg at koordinatane for hjørna i "putekvadratet" var noko med 1.41... så kan ein jo tenkje at dette vel må gå an å finne eksakt! Men om vi skal utføre denne integrasjonen eksakt så må vi og ha eksakte koordinatar for F og G (sjå figuren under).
Vi treng altså likninga for kurva som går gjennom G og F. No har vi jo konstruert denne som ein parabel så vi veit det må bli ei andregradskurve. La oss seie brennpunktet E har koordinatar \((p,q)\). Og styringslinja er \(y=r\). Den generelle andregradskurva er gitt ved formelen
\[y=a(x-h)^2+k\]
Vi ønskjer altså å finne a, h og k. Her er \((h,k)\) toppunktet til parabelen. Vi veit at dette toppunktet er halvvegs mellom styringslinja og brennpunktet. Da må y-koordinaten til toppunktet vera \(\frac{q+r}{2}\). Dette gir at \(h = p\) og \(k =\frac{q+r}{2}\). Vi kan bruke våre eksakte verdiar uten å tape generalitet i denne oppgåva. I vårt tilfelle er \(h=p=0\) og \(y=r=2\). Da blir \(k=\frac{3}{2}\).
Når vi har konstruert parabelen slik vi har gjort ser vi at (1,1) må vera eit punkt på parabelen, da det ligg like langt frå E som C.
Da blir likninga til slutt \[y=a(x-h)^2+k=a(x-0)^2+\frac{3}{2}=ax^2+\frac{3}{2}\].
Sett vi inn \((x,y)=(1,1)\) i likninga får vi at \(1=a+\frac{3}{2}\), slik at \(a=-\frac{1}{2}\). Likninga for parabelen blir:
\[y=-\frac{1}{2}\cdot x^2+\frac{3}{2}.\]
Men korleis finn vi koordinatane til F og G, det er jo der vi skal integrere mellom? Pytagoras gir oss at \(EC=\sqrt 2\). Vi får at \(EC+\sqrt(2)\cdot EC=\sqrt(2)\). Slik får vi at F har koordinatane \((\sqrt(2)-1, \sqrt 2)\). Symmetri gir at \(G=((1-\sqrt 2, \sqrt 2)\). Då kan vi integrere for å finne det blå arealet i figuren over:
\[\int_{1-\sqrt 2}^{\sqrt 2-1} \frac{-1}{2}x^2+\frac{3}{2} \,dx=\frac{4}{3}\sqrt 2-\frac{2}{3}\approx 1.22.\]
For å finne det endelege arealet treng vi fire av desse, samt kvadratet \( (2\cdot \sqrt 2 -2)^2=12-8\cdot \sqrt 2\). Totalt blir det altså:
\[ 4\cdot (\frac{10\sqrt 2}{3}-\frac{14}{3})+12-8\cdot \sqrt 2 = \frac{16\cdot \sqrt 2}{3}-\frac{20}{3} \approx 0.88\].
Og så til slutt må vi sjå kor stor andel dette utgjer av kvadratet på 4, som blir \[\frac{16\cdot \sqrt 2}{12}-\frac{20}{12}\approx 0.22.\]
Sjå figuren for å sjå dei forskjellige areala.
Algebraen ovanfor er ikkje spesielt vanskeleg, men om ein ikkje gidd gjere alle kvadreringane kan ein bruke til dømes GeoGebra sitt CAS-verktøy for å finne desse forenklingane av uttrykka. Svaret vi har fått gjeld generelt, det er alltid ca. 22 prosent av punkta i eit kvadrat som ligg nærmare sentrum enn kanten, men vi har vore litt sleipe når vi valde kor kvadratet er teikna hen. Ein kunne sikkert gjort det enda enklare for seg sjølv med å vald eit kvadrat der AB går frå 0 til 1 på x-aksen eller liknande.
Så kan vi jo legge til den litt meir direkte metoden for å finne likninga for ein parabel. I til dømes matematikkemnet 3MX fram reform 94 var dette eit kjend tema. Eit av resultata derifrå var at
Ein parabel med toppunkt i origo og \((0,\frac{p}{2})\) som brennpunkt har likninga \[x^2 =2py\].
Ein slik parabel har \(y=-\frac{p}{2}\) som styringslinje. I vårt høve er situasjonen at toppunktet ligg på (0, 3/2). Flytter vi heile oppgåva vår ned 3/2, får vi altså situasjonen beskrevet i definisjonen. Parabalen får da toppunkt på (0,0), brennpunktet blir (0,-1/2), slik at p=-1. Likninga er \(x^2 = 2py\) slik a vi får \(y = -\frac{1}{4} x^2\). Men så må vi flytte opp 3/2 så likninga til slutt blir \[y=-\frac{1}{4}x^2 +\frac{3}{2}.\]